Magnetization and de Haas-van Alphen Effect of Correlated Electrons

E. Hassinger, M. A. Wilde

Publications

  • P. Jorba, A. Regnat, A. Tong, M. Seifert, A. Bauer, M. Schulz, C. Franz, A. Schneidewind, S. Kunkemöller, K. Jenni, M. Braden, A. Deyerling, M. A. Wilde, J. S. Schilling, C. Pfleiderer, High-pressure studies of correlated electron systems, Phys. Status Solidi B 259, 2100623 (2022) [E1,F2,E3]
  • M. Naumann, F. Arnold, Z. Medvecka, S.-C. Wu, V. Suess, M. Schmidt, B. Yan, N. Huber, L. Worch, M. A. Wilde, C. Felser, Y. Sun, E. Hassinger, Weyl Nodes Close to the Fermi Energy in NbAs, Phys. Status Solidi B 259, 5, 2100165 (2022) [E3]
  • M. A. Wilde, M. Dodenhoeft, A. Niedermayr, A. Bauer, M. M. Hirschmann, K. Alpin, A. P. Schnyder, C. Pfleiderer, Symmetry-enforced topological nodal planes at the Fermi surface of a chiral magnet, Nature 594, 374-379 (2021) [E3,E1]
  • F. Herzog, H. Hardtdegen, Th. Schaepers, D. Grundler, M. A. Wilde, Experimental determination of Rashba and Dresselhaus parameters and g*-factor anisotropy via Shubnikov-de Haas oscillations, New J. Phys. 19, 103012 (2017) [E3]

Short Summary

In this project we will investigate bulk materials exhibiting spin-orbit-coupling-derived non-trivial topological properties either in momentum space or in real space. In particular we will focus on magnetic systems exhibiting multi-q spin structures and on Weyl semimetals. Experimentally, we will employ de Haas-van Alphen measurements for Fermi surface determination and resistivity and thermoelectric properties measurements complemented by thermal transport and magnetic anisotropy experiments.