Cooperative Phenomena in Correlated Materials and Topological Properties

A. P. Kampf, T. Kopp

Publications

  • S. R. Gorol, F. Loder, D. Braak, A. P. Kampf, T. Kopp, Signatures of Topological Phase Transitions in the S-Wave Superconductor at Finite Temperature, Phys. Status Solidi B 259, 2100156 (2022) [E5]
  • A. Fünfhaus, T. Kopp, E. Lettl, Winding vectors of topological defects: Multiband Chern numbers, J. Phys. A: Math. Theor. 55, 405202 (2022) [G5,E5]
  • W. A. Atkinson, A. P. Kampf, Intrinsic mechanism for magnetothermal conductivity oscillations in spin-orbit coupled nodal superconductors, Phys. Rev. Research 3, 023023 (2021) [E5]
  • S. Banerjee, W. A. Atkinson, A. P. Kampf, Intrinsic hallmarks of phonon induced charge order in cuprates, Phys. Rev. B 103, 235141 (2021) [E5]
  • M. Hemmida, N. Winterhalter-Stocker, D. Ehlers, H.-A. Krug von Nidda, M. Yao, J. Bannies, E. D. L. Rienks, R. Kurleto, C. Felser, B. Büchner, J. Fink, S. Gorol, T. Förster, S. Arsenijevic, V. Fritsch, P. Gegenwart, Topological magnetic order and superconductivity in EuRbFe$_4$As$_4$, Phys. Rev. B 103, 195112 (2021) [F4,E5]
  • S. Banerjee, W. A. Atkinson, A. P. Kampf, Emergent charge order from correlated electron-phonon physics, Communications Physics 3, 161 (2020) [E5]
  • C. Morice, E. Lettl, T. Kopp, A. Kampf, Optical conductivity and resistivity in a four-band model for {\normalfont ZrTe$_5$} from ab initio calculations, Phys. Rev. B 102, 155138 (2020) [G5,E5]
  • C. Morice, T. Kopp, A. P. Kampf, Nonunique connection between bulk topological invariants and surface physics, Phys. Rev. B 100, 235427 (2019) [E5]
  • W. A. Atkinson, S. Ufkes, A. P. Kampf, Structure of the charge-density wave in cuprate superconductors: lessons from NMR, Phys. Rev. B 97, 125147 (2018) [E5]
  • N. Mohanta, A. P. Kampf, T. Kopp, Supercurrent as a probe for topological superconductivity in magnetic adatom chains, Phys. Rev. B 97, 214507 (2018) [E5]

Short Summary

In the focus of this project are electron systems that are characterized by competing local orders or by topological order. The first is controlled by strong electronic correlations, the latter is conventionally induced by spin-orbit coupling. The transition to a state, which is topologically non-trivial, will be examined in dependence on dimensional reduction, on the geometry of the system, and on electronic correlations. In particular, we will explore the momentum-space spin texture at finite temperatures in order to specify characteristic and measurable physical properties of the bulk materials close to the transition. Since chiral edge currents signal the topological state, we will determine their emergence through a topological transition.